% STATSIG

The Al Validation Gap:
How to Builg, Test,
and Monitor Al
Features That Deliver

The Al evaluation crisis

Table of contents

The core problem

The real solution

The Full Al Testing Stack

Layer 1: Model Evaluation

Layer 2: User Validation

Layer 3: Guardrails & Monitoring

Conclusion

03

04

04-05

05-06

06-07

07-08

08-09

The Al boom is well underway. Every day, there
seems to be another SaaS product shipping a
new summarizer, recommender, or chatbot.

It's an exciting time in tech, but a troubling pattern
is emerging across all these Al-powered products.
Even if a model performs well on technical
benchmarks, there’s no guarantee that they will
accrue to a business’s goal. Without careful
testing and validation, these once-exciting new
features often fall flat; users bounce, trust erodes,
and support tickets spike.

This is no coincidence. This is the gap between
offline model validation and real-world product
success. The MIT Technology Review recently
called this the Al evaluation crisis:

“Human preference testing has also
emerged as an alternative to benchmarks ..
Al researchers are beginning to realize—and
admit—that the status quo of Al testing
cannot continue.”

Many Al developers and leaders fail to understand
that Al features are about more than just the model
itself. In the real world, it's about the UX, context,
and user goals surrounding them.

In this guide, we'll dive into how product leaders are
addressing the Al evaluation crisis in practical steps
with a three-layered approach to Al evaluation.

https://www.technologyreview.com/2025/06/24/1119187/fix-ai-evaluation-crisis/

Benchmarks don’t measure reality

For traditional machine learning, metrics like The evidence is overwhelming:
accuracy, AUC or ROUGE were often “good

enough.” They worked because the

= Meta’s Galactica scored well internally but
tasks were

was pulled within three days for fabricating

constrained: rank this list, label that image,

predict a number.

scientific facts

In practice, an Al feature is about much more than = Air Canada’s Al chatbot hallucinated fake
just model performance. There are entire UX and refund pol_icies1 triggering a lawsuit and

contexts surrounding it that impact
line of a business. Failing to design

for this can be incredibly damaging.

the bottom reputational damage

and prepare
= Stanford’s research showed general-purpose

LLM chatbots hallucinating legal facts up to
82% of the time, causing severe real-world
legal repercussions

What people think goes into an Al app

Model Parameters

Model API Call
(e.g. prompt)

What actually goes into an Al app

Model API Call

Embeddings in a In-app content
vector database (chat history)

Model Parameters
(e.g. prompt)

Non-Al app features
(UX/Ul)

User information

Proprietary Non-Proprietary

https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-days-gpt-3-science/
https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-days-gpt-3-science/
https://www.cbc.ca/news/canada/british-columbia/air-canada-chatbot-lawsuit-1.7116416
https://arxiv.org/abs/2108.07258

Product-level validation

This is the only question that really matters, and there’s only one reliable way to answer it:
real user data.

What actually works: Product-level case studies:
A/B testing Al-powered features against = Notion's Al succeeded because they didn't just
baselines or different models. guess what users wanted. They shipped behind
flags, ran experiments, and validated that Al
Holdouts to measure the cumulative impact improved real user workflows

of new features and catch metric regressions.

Trust and safety guardrails tied to user = Cursor, voted Product of the Year 2024 on
behavior and business metrics, not model Product Hunt, thrived by embedding Al deeply
confidence scores. into its IDE, emphasizing seamless user

experience rather than just benchmark claims
This is how fast-growing companies like Notion
make new Al features stick—by running the
same experiments they would for any major
product change.

The Full Al Testing Stack

User Validation

Model Evaluation

https://vercel.com/blog/notion-Zxp2La3XDfF3Vd3uNFZIh/23e7d99d56
https://statsig.com/customers/notion
https://www.producthunt.com/golden-kitty-awards/hall-of-fame

Q

The full Al testing stack isn’t just about LLM infra;
it includes everything that happens between the
model and the user.

While many organizations have dedicated
solutions, teams, and tools for each of these
layers, one of the biggest hurdles in modern
development is cross-functional handoff and
alignment. Product growth and experimentation
tools like Statsig offer solutions for each layer, all
in a unified platform for stakeholders to make
informed business decisions together.

Laver 1: Model Evaluation

= Layer 1: Model Evaluation

Check if the model produces coherent, relevant,
and safe outputs in a controlled setting.

= Layer 2: User Validation

Test whether the Al experience actually improves
user outcomes compared to the baseline.

= Layer 3: Monitoring & Guardrails

Track ongoing performance and user trust to
catch silent failures after launch.

The first filter in the Al product development process is model evaluation, or testing how the model performs in a
controlled (usually offline) environment. This step helps catch functional failures, hallucinations, and quality issues

before anything reaches production.

gpt-3.5-turbo

PROMPT

Answer the user question
. . 50%
in a sincere tone .

TEMPERATURE 0 @l

UI/UX “No sample inputs”

apt-4 ED opt-4-23k ED

Answer the user question
A 0%
in a goofy tone

o1 €D o2 €

“Lots of sample inputs” (544

Common model evaluation techniques

Teams typically run predefined evaluation sets,
manually review prompt-response pairs, or rely
on LLM-as-a-judge techniques where one model
scores the outputs of another. Automated tools
like toxicity classifiers and hallucination detectors
can help catch known pitfalls.

Common methods include offline prompt
evaluations, using labeled datasets for expected
outputs, and running outputs through rule-based
or model-based scoring filters. These techniques
help establish a baseline level of model quality
before progressing to user-facing experiments.

User Validation

Step 1: Build compelling Al features that

Benchmarks are not enough:

Offline checks only measure isolated output
quality and are poor indicators of actual product
success.

= Traditional NLP metrics like BLEU and ROUGE
show poor correlation with human quality
judgments, especially in open-ended tasks

® |nstructGPT (1.3B parameters), tuned with
human feedback, significantly outperformed the
much larger GPT-3 (175B parameters) in human
preference evaluations

A model can pass every eval and still fail in the real
world because it doesn’t actually help users get
their job done. That’s why it's critical to have a
strong way to go from this model evaluation layer
to the next: user validation.

Step 3: Collect data on all inputs and outputs

engage users

(including cost, latency, and performance)

Great tools

Step 2: Flight dozens of models, prompts,

Step 4: Use this data to select the best

and parameters

It's critical to see how the Al performs in context
—with real users, real use cases, and real stakes.
Controlled product experiments and feature flags
let you measure whether the Al-powered feature
actually improves key outcomes like engagement,
task completion, or revenue.

performing variant and train new models

With the high compute costs of Al, early
validation at small scales is especially crucial
before committing more resources. Analytics
platforms with built-in stats engines give teams
the confidence to keep, cut, or continue a new Al
program without second-guessing ROI.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155

Experimentation must-haves for user validation

A/B testing Al-powered features

= With Al products, the simplest way is to A/B
test between Al or traditional experiences as
the baseline. By randomly assigning users
between versions of an experience, you can
directly compare “Is Al better?” and not just
“Is Al working?”

= |f your A/B testing tool already does robust
statistical testing for interaction effect
detection, you can rapidly test multiple Al
variants and features at the same time.

Benchmarks are not enough:

m Holdouts are a product experimentation
technique where a percentage of users on
the non-Al version indefinitely, sort of like a
permanent control group.

= These can help you quickly catch silent
regressions that new Al features can introduce
such as confusion, friction, user churn, or bugs.

The hard truth about Al products is that a feature doesn’t succeed just because the model looks good, or because it
was launched successfully. It succeeds if, and only if, real users prefer the Al-powered experience over the baseline.
And the only way to know that is through product experimentation.

Guardrails + Monitoring

Even after a successful launch and experiment,
Al-powered features are still at risk of silent
failures. Unlike traditional software, their outputs
fluctuate based on model updates, prompt
changes, data drift, and API changes from
third-party LLM providers.

As this drift occurs, quality can degrade subtly
over time, and issues might only show up in edge
cases or downstream business metrics. That's
why ongoing monitoring and automated guardrails
are essential.

Methods for monitoring Al success

Feature flags for Al, wrapped in experiments

Launch Al features with flags and wrap them as product experiments permanently. This way,
you continuously monitor user behavior and can turn off degraded models or problematic
behaviors instantly.

Alerting on trust metrics

Instead of just monitoring system health for crashes and bugs, monitor user trust health: opt-
outs, abandonment, negative edits, and spikes in “undo” behaviors.

Built-in rollback tools and plans

Rollback isn't just for infrastructure risks. Be prepared to revert model versions, prompt versions,
and entire Al-driven flows if trust metrics degrade.

Al isn’t “set-it-and-forget-it”. It's a fundamentally different type of product; a living, probabilistic system that needs
permanent guardrails. Monitoring trust signals is as critical as monitoring uptime or error rates.

Al is easy to ship, but hard to get right. The only way to build Al features that actually work is
the same way product teams have validated software for decades: experimentation.

Product experiments are nothing new. It's been
the backbone of how companies like Facebook,
Netflix, Amazon, Uber, and Airbnb built products
that scaled. These companies didn’t rely on
intuition. They ran experiments to understand
what worked for their users and what didn’t.

The difference is that, in the past, engineers
shipped deterministic features. You knew
exactly how a button, a ranking algorithm, or
a recommendation rule behaved, even if the
business impact wasn't fully clear.

With Al, that certainty is gone. Foundation models
are probabilistic, not deterministic. Outputs vary
based on prompts, user inputs, context, and even
silent model updates. What looks fine in a demo or
benchmark might quietly fail in production, hurting
the user experience, degrading trust, or driving
churn without anyone noticing.

Our Customers

@) OpenAl A Vercel

oo Speak

é Supernormal

B\ /ddy.ai

Bread Al

character.ai

A ATLASSIAN

This is why Al requires a different level of
discipline. You need to continuously answer:

= Layer 1: Model Evaluation

Does this Al actually help users?

= Layer 2: User Validation

Do users prefer it over the baseline?

= Layer 3: Monitoring & Guardrails

Is it still working as intended over time?

The only way to answer these questions is through
a continuous product loop: evaluate = experiment
- monitor = improve.

Most tools only solve one part of that loop. Statsig

is the leading tool that connects all three layers in
one integrated platform.

If you're ready to take the next step,
try out our tool for yourself.

SEE HOW IT WORKS

[N Notion webAIN
Ol Otter.ai

ANTHROP\C

‘B Meshy

https://console.statsig.com/demo?utm_campaign=ai-campaign&utm_source=whitepaper&utm_medium=pdf&utm_content=nurture

	AI_OnePager_Cover_071125
	AI_OnePager_Intro_071125
	AI_OnePager_CoreProblem_071125
	AI_OnePager_Solution_071125
	AI_OnePager_Layer1_071125
	AI_OnePager_Layer2_071125
	AI_OnePager_Layer3_071125
	AI_OnePager_Conclusion_071125
	AI_OnePager_Closing_071125

